inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Anna I. Tursina,* Sergei N. Nesterenko and Yuri D. Seropegin

Department of Chemistry, Moscow State University, Leninskie Gory, 119 992 Moscow, Russia

Correspondence e-mail: tursina@newmail.ru

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{In-Pd}) = 0.002 \text{ Å}$ R factor = 0.040 wR factor = 0.112Data-to-parameter ratio = 15.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Cerium palladium indide, CePdIn, crystallizes in the hexagonal space group $P\overline{6}2m$ and belongs to the ZrNiAl structure

Intermetallic CePdIn

Received 1 April 2004 Accepted 13 April 2004 Online 24 April 2004

Comment

type.

During systematic studies of the ternary cerium-palladiumindium system, the intermetallic compound CePdIn was obtained. In the Ce-Pd-In system, four ternary compounds have been investigated previously by single-crystal X-ray diffraction: CePdIn₂ (Ijiri *et al.*, 1996), Ce₄Pd₁₀In₂₁ (Zaremba *et al.*, 2003), CePd₂In₄ (Tursina *et al.*, 2003), and CePd₃In₂ (Nesterenko *et al.*, 2004).

CePdIn crystallizes in the ZrNiAl-type structure (Krypyakevich *et al.*, 1967), which is an ordered variant of the binary compound Fe₂P (Rundqvist & Jellinek, 1959). Up to now, only lattice parameters of CePdIn have been determined (Ferro *et al.*, 1974; Brück *et al.*, 1993). Each Ce atom is surrounded by five Pd and six In atoms, which form a distorted pentagonal prism with one additional atom [Pd₅In₆]. Atom Pd1 is coordinated by six Ce atoms forming a trigonal prism [at a distance of 3.0710 (8) Å] and three additional In atoms capping the square faces at 2.9484 (19) Å. Atom Pd2 is at the center of a similar polyhedron formed by six In atoms at 2.777 (2) Å and three Ce atoms at 3.183 (3) Å. The In atom is surrounded by a distorted tetragonal prism with four additional atoms [Ce₆Pd₄In₂] (Fig. 1).

Figure 1

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Anna I. Tursina et al. • CePdIn

i64

shown in the polyhedral representation.

A view of the CePdIn structure along the c axis. Part of the structure is

Experimental

The title compound was prepared by direct arc melting of high purity components (Ce 98.0, Pd 99.9, In 99.9 wt% pure) under an argon atmosphere. The sample with nominal composition $Ce_{33}Pd_{34}In_{33}$ was annealed in an evacuated double quartz ampoule at 770 K over a period of 600 h and quenched in cold water. Weight loss was less than 1% of the total mass of 1.0 g. A single crystal was selected from the surface of the resulting alloy.

Crystal data

CePdIn	Mo $K\alpha$ radiation	
$M_r = 361.34$	Cell parameters from 25	
Hexagonal, P62m	reflections	
a = 7.7036 (15) Å	$\theta = 7.3 - 18.9^{\circ}$	
c = 4.0190 (14) Å	$\mu = 30.63 \text{ mm}^{-1}$	
$V = 206.56 (9) \text{ Å}^3$	T = 293 (2) K	
Z = 3	Prism, metallic dark grey	
$D_x = 8.715 \text{ Mg m}^{-3}$	$0.09 \times 0.03 \times 0.03 \text{ mm}$	
Data collection		
Enraf-Nonius CAD-4	$R_{\rm int} = 0.077$	
diffractometer	$\theta_{\rm max} = 27.1^{\circ}$	
ω scans	$h = 0 \rightarrow 9$	
Absorption correction: ψ scan	$k = -9 \rightarrow 8$	
(North et al., 1968)	$l = 0 \rightarrow 5$	
$T_{\min} = 0.285, T_{\max} = 0.393$	1 standard reflection	
551 measured reflections	frequency: 120 min	

195 independent reflections 171 reflections with $I > 2\sigma(I)$

Refinement

intensity decay: 1%

Table 1

Selected interatomic distances (Å).

In-Pd2	2.777 (2)	In-Ce ⁱⁱⁱ	3.4267 (18)
In-Pd1 ⁱ	2.9484 (19)	Ce-Pd1 ^{iv}	3.0710 (8)
In-Ce	3.290 (3)	Ce-Pd2 ^v	3.183 (3)
In–In ⁱⁱ	3.319 (5)		

Symmetry codes: (i) x, y - 1, z; (ii) -x, -x + y, z; (iii) y, x - 1, z; (iv) y, x, z; (v) 1 + x, y, z.

Refinement of the structure, taking into account inversion twinning, did not result in a significant improvement. The highest peak and the deepest hole in the difference map are located 1.92 Å from In and 0.76 Å from Ce, respectively.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by the INTAS project No. 00-234.

References

- Brandenburg, K. (1998). *DIAMOND*. Version 2.1b. Crystal Impact GbR, Bonn, Germany.
- Brück, E., Nakotte, H., Bakker, K., de Boer, F. R., de Chatel, P. F., Li, J.-Y., Kuang, J. P. & Yang, F.-M. J.(1993). *J. Alloys Compd*, **200**, 79–86.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ferro, R., Marazza, R. & Rambaldi, G. (1974). Z. Metallkd. 65, 37-39.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Ijiri, Y., DiSalvo, F. & Yamane, H. (1996). J. Solid State Chem. 122, 143-147.
- Krypyakevich, P. I., Markiv, V. Y. & Melnyk, Y. V. (1967). Dopov. Akad. Nauk Ukr. RSR Ser. A, 8, 750–753.
- Nesterenko, S. N., Tursina, A. I., Rogl, P. & Seropegin, Y. D. (2004). J. Alloys Compd. In the press.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Rundqvist, S. & Jellinek, F. (1959). Acta Chem. Scand. 13, 425-432.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tursina, A. I., Gribanov, A. V., Seropegin Y. D. & Nesterenko, S. N. (2003). 14th International Conference on Solid Compounds of Transitional Elements, Programme and Abstracts, Linz, Austria, p. PO II-20.
- Zaremba, V. I., Rodewald, U. C., Kalychak, Y. M., Galadzhun Y. V., Kaczorowski, D., Hoffmann, R.-D. & Pöttgen, R. (2003). Z. Anorg. Allg. Chem. 629, 434–442.